
AIGROW: A Feedback-Driven Test Generation
Framework for Hardware Model Checkers

Wenjing Deng
Shanghai Key Laboratory of Trustworthy Computing

East China Normal University, China
51215902117@stu.ecnu.edu.cn

Abstract—This research abstract introduces an effective and
efficient approach to automatically generate high-quality hard-
ware model checker benchmarks. The key contribution of this
work is to model the input format of hardware model checkers
using a tree-based structure named ARTree and build an effective
feedback-driven test generation framework based on ARTree
named AIGROW. The evaluation shows that AIGROW generates
very small but high-quality benchmarks for coverage-oriented
and performance-oriented testing and outperforms the existing
generation-based testing tools.

Index Terms—test generation; hardware model checker

I. INTRODUCTION

Hardware model checking [5], [9], [10], [12] plays a vital
role for hardware design and verification. Given a model M
abstracted from a hardware design and a property P , hardware
model checking is to check whether P holds on M . Many
hardware model checking algorithms have been implemented
as tools, called hardware model checkers (HMCers). HMCers
are expected to find problems or prove the safety in hardware
designs as fast as possible. Thus, the developers of HMCers
need a large number of high-quality tests to evaluate the
correctness and performance of HMCers.

However, except for benchmarks provided by the Hardware
Model Checking Competition (HWMCC), no more high-
quality tests are available for developers. AIGFUZZ [1] and
AIGEN [13] are two existing random test generation tools
for HMCers; the tests generated by them are generally very
large in size. A mutation-based tool for testing HMCers is
Hammer [18], but the quality of the generated test is limited
by the initial mutation seeds. High-quality but small tests are
still required by the developers. This work targets this problem.

Compared with random test generation and mutation,
feedback-driven test generation has shown to be more effective
in some situations [11], [14]–[17]. However, feedback-driven
generation requires the generated test to be extendable. Hence,
the existing random generation tools AIGFUZZ and AIGEN
do not fit directly into this approach [1], [13].

The challenge of the problem is how to make hardware
designs extendable. To solve this problem, this work proposes
a tree-based structure ARTree to describe the hardware de-
signs. Then the hardware designs can be extendable using
it. Meanwhile, this paper proposes a feedback-driven test
generation framework for HMCers, which is implemented as
a tool named AIGROW.

A0

I0 L0

I1

A0
out

L0I0

I1

A0

L0A1

A0I0 I1

A0
out

L0A1

I0
I1

(d)(c)(b)(a)

Fig. 1: AIGs and the corresponding ARTrees

This framework uses the feedback from HMCers executions
to guide each single-step extension of ARTree. The evaluation
shows that AIGROW is more efficient than previous tools in
generating high-quality but small tests.

II. APPROACH

The AIGER format [6] is a compact intermediate language
and is widely used to describe hardware design, therefore, the
approach is demonstrated with this input format. An AIGER
file describes a sequential And-Inverter Graph (AIG) built with
AND gates and latches. The key idea is that each AIG can be
transformed into an AIG relation tree (ARTree); single-step
extension of an existing ARTree to build a new ARTree; in
evolution, following the guidance of feedback, ARTree will
be extended in the desired direction.

Transformation is the process of translating an AIG into
an ARTree or its reverse. Fig. 1(a) to (b) show an example of
the transformation procedure. The output of A0 is the output
of the system; therefore, A0 is the root node of the ARtree.
Since the outputs of L0 and I0 are the inputs of A0, they are
the children of A0 in the ARtree. As I1 is the input of L0,
I1 is the child of L0 in the ARtree. Fig. 1(c) to (d) give a
more complex example when there is a cycle in the graph.
The output of A0 is the input of L0. In this situation, the
terminal node labeled as A0 is the child of L0, and A0 cannot
be extended further (labeled as a square in the ARtree).

Extension is the process of extending an ARTree into a new
one. Extension consists of two stages: the initialization phase
and the growth phase. The initialization phase removes the
input nodes to make their parent nodes extensible. The growth
phase randomly adds new nodes to the extensible nodes. For
example, Fig. 1(d) is an extension of Fig. 1(b). The approach
first removes I0 and I1 and then add node A1 to node A0.
As A1 is still an extensible node, A1 is extended to have two
children I0 and I1. Extended children can be existing or new

Hardware
Model Checker

…

F′ 1F1

F0 F1 Fn+1

C

A0 A1 An+1
D

(F′ 1)

T′ 1

Translator

T1

Translator
A

Generator
B

Fig. 2: Workflow of AIGROW.

components; for example, node L0 is extended to have a child
node A0, which is an existing component.

Evolution is to select promising ARTrees and evolve them
to generate high-quality tests. Fig. 2 provides an overview
of the process, which consists of four steps. Step A selects
an AIG from the queue of length n and translates it into an
ARTree, assuming that the AIG is A1 and the ARTree is T1.
Step B extends T1 to a new ARTree T ′

1. Step C transforms
T ′
1 into an AIG as input to a hardware model checker and

obtains the feedback F ′
1 (e.g., coverage or solving time). Step

D decides whether the extended ARTree should be stored
in the queue. If F ′

1 is greater than F1, the new AIG An+1

translated from ARTree Tn+1 and the corresponding feedback
F ′
1 are added to the queue. Otherwise, the ARTree is discarded.

After sufficient iterations, high-quality tests are in the queue.

III. EVALUATION

HMCers PDR [8] in ABC and IC3ref [2] are chosen to
evaluate this method because they both implement the state-of-
the-art hardware model checking algorithm IC3 [7]. This paper
compares AIGROW with two existing test generation tools
AIGFUZZ [1] and AIGEN [13]. To show the effectiveness
of the feedback strategy, a control group is also set to run
AIGROW without feedback (AIGROW-nofeed). The feedback
is set to coverage as the guidance in Fig. 3(a) and solving
time as the guidance in Fig. 3(b), respectively. Each test has
a solution time limit of 2 hours.

Fig. 3(a) shows the effectiveness of AIGROW on coverage-
oriented testing and compares the efficiency of generation tools
by line coverage. The dashed line is a reference that denotes
the line coverage achieved by all the HWMCC benchmarks
that can be solved in one hour. For PDR, AIGROW peaks faster
than other tools with or without coverage guidance. For IC3ref,
the growth of AIGROW is as fast as AIGFUZZ. Both on PDR
and IC3ref, the coverage of AIGROW and AIGFUZZ is close to
the dashed line within 1 hour; while the efficiency of AIGEN
is not as good as desired. The result concludes that AIGROW
can achieve maximum coverage faster than other tools.

Fig. 3(b) shows the evaluation results of performance-
oriented testing. As well as AIGEN, the tests generated by
AIGROW-nofeed are solved in a short time. From AIGROW-
nofeed’s results, the feedback-driven strategy is necessary
when generation is guided by solving time. For PDR, only

0 900 1800 2700 3600
time (sec.)

0

20

40

60

80

co
ve

ra
ge

 (%
)

PDR

0 900 1800 2700 3600
time (sec.)

0

20

40

60

80

co
ve

ra
ge

 (%
)

IC3ref
AIGROW
AIGROW-nofeed
AIGEN
AIGFUZZ
HWMCC

(a) Comparison of coverage. The x-axis denotes the CPU time, and the
y-axis means the coverage achieved by all current generated tests.

0 22500 45000 67500 90000
time (sec.)

0

2000

4000

6000

8000

so
lv

in
g

tim
e

(s
ec

.)

PDR

0 22500 45000 67500 90000
time (sec.)

0

2000

4000

6000

8000

so
lv

in
g

tim
e

(s
ec

.)

IC3ref
AIGROW
AIGROW-nofeed
AIGEN
AIGFUZZ

(b) Efficiency comparison among generation tools. The x-axis denotes
the CPU time, and the y-axis means the current max solving time.

Fig. 3: Comparison of different generation tools.

TABLE I: Average size of generated tests.

AIGROW AIGFUZZ AIGEN

cov. perf. cov. perf. cov. perf.

PDR 10 109 6,864 6,871 189,190 180,191
IC3ref 15 40 6,785 6,867 180,193 180,194

AIGROW can generate hard-to-solve test cases, and a timeout
test case is generated in 15,000 s. For IC3ref, AIGROW
performs better than AIGFUZZ. The results conclude that
AIGROW can generate more difficult test cases than other
generation tools with the help of performance guidance.

Table. I provides the average size of generated test cases
by different generation tools. Size is defined as the sum of
the number of latches and the number of AND gates in a
test. The results show that the tests generated by AIGROW are
much smaller than others. The result concludes that AIGROW
generate smaller test cases than other generation-based tools.

IV. CONCLUSION

This research abstract introduces ARTree to facilitate ex-
tensible hardware design. Based on ARTree, a feedback-
driven framework was constructed and implemented as a tool
named AIGROW. The evaluation demonstrates that AIGROW
is more efficient than other tools in generating high-quality
tests. The generated tests are also in small sizes. For future
work, it would be interesting to extend the idea of ARTree
to generate tests for other hardware design systems, such as
Matlab Simulink [3] and Xilinx Vivado [4].

REFERENCES

[1] Aiger, http://fmv.jku.at/aiger/
[2] IC3Ref. https://github.com/arbrad/IC3ref
[3] Simulink, https://ww2.mathworks.cn/products/simulink.html
[4] Vivado, https://www.xilinx.com/products/design-tools/vivado.html
[5] Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking

without bdds. In: TACAS. vol. 1579, pp. 193–207 (1999)
[6] Biere, A., Heljanko, K., Wieringa, S.: Aiger 1.9 and beyond (2011)
[7] Bradley, A.R.: Sat-based model checking without unrolling. In: VMCAI.

pp. 70–87. Springer (2011)
[8] Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength

verification tool. In: CAV. pp. 24–40 (2010)
[9] Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of

finite-state concurrent systems using temporal logic specifications.
TOPLAS 8(2), 244–263 (1986)

[10] Clarke, E.M., Gupta, A., Jain, H., Veith, H.: Model checking: Back and
forth between hardware and software. In: VSTTE. vol. 4171, pp. 251–
255 (2005)

[11] Garg, P., Ivančić, F., Balakrishnan, G., Maeda, N., Gupta, A.: Feedback-
directed unit test generation for c/c++ using concolic execution. In:
ICSE. pp. 132–141 (2013)

[12] Griggio, A., Roveri, M.: Comparing different variants of the ic3 algo-
rithm for hardware model checking. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 35(6), 1026–1039 (2016)

[13] Jacobs, S., Sakr, M.: Aigen: Random generation of symbolic transition
systems. In: CAV (2021)

[14] Jaygarl, H., Lu, K., Chang, C.K.: Genred: A tool for generating and
reducing object-oriented test cases. In: COMPSAC. pp. 127–136 (2010)

[15] Pacheco, C., Ernst, M.D.: Eclat: Automatic generation and classification
of test inputs. In: ECOOP. vol. 3586, pp. 504–527 (2005)

[16] Pacheco, C., Lahiri, S.K., Ball, T.: Finding errors in. net with feedback-
directed random testing. In: ISSTA. pp. 87–96 (2008)

[17] Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed
random test generation. In: ICSE. pp. 75–84 (2007)

[18] Zhang, C., Sun, M., Li, J., Su, T., Pu, G.: Feedback-guided circuit
structure mutation for testing hardware model checkers. In: ICCAD
(2021)

