

AIGROW: A Feedback-Driven Test Generation Framework for Hardware Model Checkers

Wenjing Deng

Shanghai Key Laboratory of Trustworthy Computing East China Normal University, China

the tools for validating the implementation of hardware designs

the tools for validating the implementation of hardware designs

They should be intensively evaluated!

PDR: a mature hardware model checker

```
$ time ./PDR big test
unsat
user 0.01s
$ Is -I big_test
-rw-rw-r-- (127KB) big_test
$
```

From Intel.zip

PDR: a mature hardware model checker

```
$ Is -I small test
                      small test
-rw-rw-r-- 1KB
                                          High-quality test
$ timeout 2h ./PDR small_test
                                            Difficult
                                            Small size
timeout!
                                            Diverse
$
                                          Hard to obtain!
```

Why high-quality tests are hard to obtain?

Source of Tests	Availability	Difficulty	Avg. size	Diversity
Real world benchmarks	no	yes	large	high
	gene	eration tools		
Our approach	_	_		_

Why high-quality tests are hard to obtain?

Source of Tests	Availability	Difficulty	Avg. size	Diversity
Real world benchmarks	no	yes	large	high
AIGEN ^[1]				
AIGFUZZ ^[2]				
Our approach				

Our approach

^[1] Jacobs, S., Sakr, M.: Aigen: Random generation of symbolic transition systems. In: CAV (2021).

^[2] Aiger, http://fmv.jku.at/aiger/

Why high-quality tests are hard to obtain?

Source of Tests	Availability	Difficulty	Avg. size	Diversity
Real world benchmarks	no	yes	large	high
AIGEN ^[1]	yes	no	small	low
AIGFUZZ ^[2]				
Our approach				

^[1] Jacobs, S., Sakr, M.: Aigen: Random generation of symbolic transition systems. In: CAV (2021).

^[2] Aiger, http://fmv.jku.at/aiger/

Why high-quality tests are hard to obtain?

Source of Tests	Availability	Difficulty	Avg. size	Diversity
Real world benchmarks	no	yes	large	high
AIGEN ^[1]	yes	no	small	low
AIGFUZZ ^[2]	yes	no	large	high

Our approach

^[1] Jacobs, S., Sakr, M.: Aigen: Random generation of symbolic transition systems. In: CAV (2021).

^[2] Aiger, http://fmv.jku.at/aiger/

Why high-quality tests are hard to obtain?

Source of Tests	Availability	Difficulty	Avg. size	Diversity
Real world benchmarks	no	yes	large	high
AIGEN ^[1]	yes	no	small	low
AIGFUZZ ^[2]	yes	no	large	high
Our approach	yes	yes	small	high

^[1] Jacobs, S., Sakr, M.: Aigen: Random generation of symbolic transition systems. In: CAV (2021).

^[2] Aiger, http://fmv.jku.at/aiger/

Remove Inputs

Add Nodes

Add Inputs

Our Feedback-Driven Framework: AIGROW

Our Feedback-Driven Framework: AIGROW

Our Feedback-Driven Framework: AIGROW

Evaluation Setting

Testing targets

PDR: a mature hardware model checker

IC3ref: a reference implementation of IC3 algorithm

Evaluation metrics

Difficulty: checking time (sec.)

Size: #units

Diversity: line coverage (%)

Result: Difficulty

AIGROW generates more difficult tests.

AIGEN

Feedback strategy make difference in generating difficult tests.

Result: Avg. Size (#units)

Hardware Model Checker	AIGROW	AIGEN	AIGFUZZ
PDR	109	6,871	1,910
IC3ref	40	6,867	1,940

The avg. size of the tests generated by AIGROW is **10x smaller** than AIGEN and AIGFUZZ

Result: Coverage

AIGROW achieves higher coverage than AIGEN.

Result: Coverage

AIGROW achieves higher coverage than AIGEN.
AIGROW achieves the maximum coverage faster than AIGFUZZ.

Future Work

Apply this approach to test other model-based design tools.

 Our preliminary investigation found 21 critical bugs in the modelbased design tool of our industry partner.

Conclusion

Introduction

Why high-quality tests are hard to obtain?

Source of Tests	Availability	Avg. size	Coverage	Difficulty
Real world benchmarks	no	large	high	yes
AIGEN ^[1]	yes	small	low	no
AIGFUZZ ^[2]	yes	large	high	no
Our approach	yes	small	high	yes

[1] Jacobs, S., Sakr, M.: Aigen: Random generation of symbolic transition systems. In: CAV (2021).

[2] Aiger, http://fmv.jku.at/aiger/

ICSE SRC | PRESENTATION

Result: Coverage

AIGEN

AIGROW

AIGROW without feedback

AIGFUZZ

PDR

PDR

IC3ref

PDR

IC4ref

IC4ref

PDR

IC4ref

Take-aways

Approach

Incremental generation guided by feedback

Perform better than existing tools

- Generate more difficult test cases.
- Achieve maximum coverage **faster**.
- Fewer redundant units in a single test.

Why high-quality tests are hard to obtain?

Def. High-quality Tests.

•	Hard to solve		Evaluation
---	---------------	--	-------------------

Diverse among tests
 Validation

Fewer redundant units in a single test

Debug

Source of Tests	Always available	Fewer Redundant Units	Diverse	Hard to Solve
Real world	no	no	yes	yes
AIGEN	yes	yes	no	no
AIGFUZZ	yes	no	yes	no

Our Approach avoid these shortcomings.

Layout

Background

Approach

Take-away

Introduction

Result

Diversity of Our Benchmarks

Generation Process for PDR

Background

Def. Hardware Model Checkers.

The tools for validating the implementation of hardware designs.

Hardware model checkers should be intensively <u>validated</u> and <u>evaluated</u>.

High-quality tests

hard to obtain!